

Prof. dr. Petar M. Seferovic, MD, PhD, FESC, FACC Co-editor for Eastern Europe, European Heart Journal Vice-president, European Society of Cardiology (2020-2022) President, Heart Failure Association of the ESC (2018-2020)

The golden four in the treatment of heart failure

Academician, Serbian Academy of Sciences and Arts Professor of Cardiology, Belgrade University School of Medicine President, Heart failure Society of Serbia

Heart failure: The basics of clinical cardiology

"Basic task of cardiologist is to know diagnosis and treatment of heart failure" Sir Thomas Lewis 1913.

"Heart failure is a major health threat of the 21st century, it is frequent, deadly but preventable" Thomas Luscher, ESC President-elect 2023.

European Journal of Heart Failure (2021) doi:10.1002/ejhf.2143 **RESEARCH ARTICLE**

European Journal of Heart Failure

155N 1388-9842 (Print)

The Heart Failure Association Atlas: Heart Failure Epidemiology and Management Statistics 2019

Petar M. Seferović^{1,2}*, Panagiotis Vardas^{3,4}, Ewa A. Jankowska⁵, Aldo P. Maggioni⁶, Adam Timmis⁷, Ivan Milinković^{1,8}, Marija Polovina^{1,8}, Chris P. Gale^{9,10,11}, Lars H. Lund¹², Yuri Lopatin¹³, Mitja Lainscak^{14,15}, Gianluigi Savarese¹², Radu Huculeci⁴, Dzianis Kazakiewicz⁴, and Andrew J.S. Coats¹⁶, in collaboration with the National Heart Failure Societies of the ESC member countries (see *Appendix*)

¹Faculty of Medicine, University of Belgrade, Belgrade, Serbia; ²Serbian Academy of Sciences and Arts, Belgrade, Serbia; ³Hygeia Heart Sector, Hygeia Group of Hospitals, Athens, Greece; ⁴European Society of Cardiology Health Policy Unit, European Heart Health Institute, European Heart Agency, Brussels, Belgium; ⁵Department of Heart Diseases, Wroclaw Medical University, and Centre for Heart Diseases, University Hospital, Wroclaw, Poland; ⁶ANMCO Research Center, Heart Care Foundation, Florence, Italy; ⁷Queen Mary University London, London, UK; ⁸Department of Cardiology, Clinical Centre of Serbia, Belgrade, Serbia; ⁹Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK; ¹⁰Leeds Institute for Data Analytics, University of Leeds, Leeds, UK; ¹¹Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK; ¹²Department of Medicine, Karolinska Institute, and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden; ¹³Volgograd State Medical University, Regional Cardiology Centre Volgograd, Volgograd, Russia; ¹⁴Department of Internal Medicine, and Department of Research and Education, General Hospital Murska Sobota, Murska Sobota, Slovenia; ¹⁵Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; and ¹⁶Centre of Clinical and Experimental Medicine, IRCCS San Raffaele Pisana, Rome, Italy

Received 28 January 2021; revised 17 February 2021; accepted 23 February 2021

Incidence of heart failure per 1000 person-years (left), and prevalence of heart failure per 1000 persons (right)

- •Median annual incidence of HF: 3.20 per 1000 person-years (IQR 2.66–4.17)
- *Ranging from <2 in Italy, to ≥6 in Estonia and Germany
- •Median prevalence of HF: 17.20 per 1000 people(IQR 14.30–21)
- *Ranging from ≤12 in Greece and Spain to >30 in Lithuania and Germany

Seferovic P et al. European Journal of Heart Failure (2021)

Number of HF-related hospital discharges per million people (left) and average length of stay in hospital primarily due to HF (right).

- •Heart failure-related hospital discharge statistics available for 24 countries (57%)
- •Median number of HF discharges: 2671 per million people (IQR 1771–4317)
- *Ranging from <1000 in North Macedonia and United Kingdom to >6000 in Romania, Norway and Germany
- Days spent in hospital available for 32 countries (76%)

•Median length of stay for hospitalized for HF: 8.50 days (IQR 7.38–10)

*Ranging from ≤6 days in Denmark and Poland to ≥11 days in Croatia, Iceland and Belgium Seferovic P et al. European Journal of Heart Failure (2021)

Hospitals with dedicated HF centers

Russian Federation 0.03 Ukraine 0.07 Lebanon 0.15 Kyrgyzstan 0.16 Romania 0.20 Kazakhstan 0.22 Azerbaijan 0.30 North Macedonia 0.48 Latvia 0.52 Belarus 0.84 Bosnia and Herzegovina 0.90 0.91 Finland Slovakia 0.92 Hungary 1.02 Republic of Moldova 1.13 Serbia 1.15 1.18 Switzerland Germany 1.34 Croatia 1.47 Portugal 1.63 Israel 2.14 2.27 Estonia Ireland 2.52 Iceland 2.83 Austria 3.39 Lithuania 3.58 Greece 4.29 Slovenia 4.35 Netherlands 4.64 Denmark 5.38 Italy Norway

Hospitals with HF centers, per million people

7.40

7.45

•Median number of HF centres:

1.16 per million people (IQR 0.51–2.97) *Ranging from <0.50 in Russian Federation, Ukraine,

Lebanon, Kyrgyzstan, Romania, Kazakhstan, Azerbaijan, and North Macedonia to >7 in Norway and Italy

> Source: HFA Survey, 2018 or latest year Data not available: Belgium, Bulgaria, Cyprus, Czech Republic, Poland, Republic of Georgia, Spain, Sweden, Turkey, United Kingdom. Seferovic P et al. European Journal of Heart Failure (2021)

Trilateral Cooperation Project

Starting date: Munich, March 22 nd, 2019

Petar M. Seferovic President of HFA

Randall Starling President of HFSA

Hiroyuki Tsutsui President of JHFS

The Japanese Heart Failure Society

European Journal of Heart Failure (2021) **23**, 352–380 doi:10.1002/ejhf.2115

Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure

Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association Journal of Cardiac Failure Vol. 27 No. 4 2021

Consensus Statement

Universal Definition and Classification of Heart Failure

A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure

Endorsed by Canadian Heart Failure Society, Heart Failure Association of India, the Cardiac Society of Australia and New Zealand, and the Chinese Heart Failure Association

BIYKEM BOZKURT, MD, PhD, Chair, ANDREW JS COATS, DM, DSC, Co-Chair, HIROYUKI TSUTSUI, MD, Co-Chair, MAGDY ABDELHAMID, MD, STAMATIS ADAMOPOULOS, MD, NANCY ALBERT, PhD, CCNS, CHFN, CCRN, NE-BC, STEFAN D. ANKER, MD, PhD, JOHN ATHERTON, MBBS, PhD, MICHAEL B€OHM, MD, JAVED BUTLER, MD, MPH, MBA, MARK H. DRAZNER, MD, MSc, G. MICHAEL FELKER, MD, MHS, GERASIMOS FILIPPATOS, MD, GREGG C. FONAROW, MD, MONA FIUZAT, PharmD, JUAN ISTEBAN GOMEZ-MESA, MD, PAUL HEIDENREICH, MD, TERUHIKO IMAMURA, MD, PhD, JAMES JANUZZI, MD, EWA A. JANKOWSKA, MD, PhD, PRATEETI KHAZANIE, MD, MPH, KOICHIRO KINUGAWA, MD, PhD, CAROLYN S.P.LAM, MBBS, FRCP, PhD, YUYA MATSUE, MD, PhD, MARCO METRA, MD, TOMOHITO OHTANI, MD, PhD, MASSIMO FRANCESCO PIEPOLI, MD, PhD, PIOTR PONIKOWSKI, MD, PhD, GIUSEPPE M.C. ROSANO, MD, PhD, YASUSHI SAKATA, MD, PhD, PETAR SEFEROVI , MD, PhD, RANDALL C. STARLING, MD, MPH, JOHN R. TEERLINK, MD, ORLY VARDENY, PharmD, MS, KAZUHIRO YAMAMOTO, MD, PhD, CLYDE YANCY, MD, MSc, JIAN ZHANG, MD, PhD, AND SHELLEY ZIEROTH, MD

Stages in the development and progression of heart failure

European Journal of Heart Failure (2021)23, 352–380; Journal of Cardiac Failure (2021)27(4) 387-413

Management of HFrEF by phenotype

CLINICAL PRACTICE GUIDELINE: FULL TEXT

2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure

EHJ 2021;00:1-128; Circulation. 2022;145:00-00

European Journal of Heart Failure (2019) European Society doi:10.1002/ejhf.1369

ESC

of Cardiology

The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology

Wilfried Mullens^{1,2}*, Kevin Damman³, Veli-Pekka Harjola⁴, Alexandre Mebazaa⁵, Hans-Peter Brunner-La Rocca⁶, Pieter Martens^{1,2}, Jeffrey M. Testani⁷, W.H. Wilson Tang⁸, Francesco Orso⁹, Patrick Rossignol¹⁰, Marco Metra¹¹, Gerasimos Filippatos^{12,13}, Petar M. Seferovic¹⁴, Frank Ruschitzka¹⁵, and Andrew J. Coats¹⁶

PARADIGM-HF Primary Results

Significant Reduction in Primary Endpoints (CV death or heart failure hospitalization), CV Death and All-Cause Mortality

3860

Switching from ACEi/ARB to sacubitril/valsartan Benefits of sacubitril/valsartan in "lower than normal" LVEF

Left ventricular ejection fraction at screening (%)

Sacubitril/valsartan may be a preferred treatment option compared to either ACEi or ARBs in patients with LVEF <57%

Solomon S et al. N Engl J Med 2019;381:1609-20

Solon S, McMurray J. Journal of Cardiac Failure Vol. 27 No. 6 2021

20-23 MAY PRAGUE & ONLINE

Secondary Outcome

Hierarchical composite of a) time to CV death,

b) HF hospitalizations, c) urgent HF visits, and d) change in NT-proBNP

SGLT2 inhibition

Mechanisms of the cardio-/nephroprotective effects

Lopaschuk, G.D. et al. J Am Coll Cardiol Basic Trans Science. 2020;5(6):632–44

EMPEROR Reduced

Primary endpoint: First adjudicated CV death or HF hospitalisation

Key secondary: Adjudicated total HF hospitalisations (first and recurrent)

Composite renal endpoint (ESKD or sustained profound decrease in eGFR)

DAPA-HF: primary composite outcome CV mortality / HF hospitalisation / Urgent HF visit

DAPA = dapagliflozin; HF = heart failure; hHF = hospitalization for heart failure; HR = hazard ratio; NNT = number needed to treat. 1. McMurray J. Presentation at: European Society of Cardiology Congress. September 1, 2019; Paris, France.

Manuel Jimenez Prieto: Martin Charcot visits a patient, 1897

2021 ESC/HFA Guidelines for heart failure New strategies for medical treatment

- Quarduple, instead of triple, basic medical treatment
- Simultaneous, instead of sequential, introduction of the drugs

Patients profiling (Strategic phenotyping)

Patient profling in heart failure

🔘 European Society of Cardiology

STRONG-HF – Study Design

HF therapy: combining ACEi/ARB/ARNi & BB & MRA *Safety* = clinical exam & biology (NT-proBNP, K, Creat, hemoglobin)

STRONG-HF: Primary Endpoint

Primary endpoint:

180-Day Readmission for HF or All-Cause Death

Article highlight:

Accelerated up-titration and optimized ordering can prevent at least 14 deaths and 47 HF hospitalisations/CV deaths per 1000 treated HFrEF patients over the first 12 months.

2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

PRE-HOSPITAL PHASE

- Timely institution of I.V. diuretics.
- Transfer to ED

ADMISSION PHASE

EMERGENCY DEPARTMENT

 Disposition decisions: ICU/CCU, hospital ward, early discharge.

COACH

INHOSPITAL AND

PRE-DISCHARGE PHASE

Decongestion

ADVOR CLOROTIC EMPULSE

Early initiation and optimisation of GDMT.

POSTDISHARGE PHASE

- Early follow-up (2 weeks post-discharge)
- GDMT optimisation

STRONG-HF

Admission phase COACH trial: intervention vs standard care

Lee DS et al. N Engl J Med 2023;388:22-32

CLINICAL RESEARCH

Global disparities in prescription of guideline-recommended drugs for heart failure with reduced ejection fraction Get access > Jasper Tromp and others

European Heart Journal, Volume 43, Issue 23, 14 June 2022, Pages 2224–2234,

Article highlight:

REPORT-HF study: Only ~37% of patients with HFrEF were discharged with at least 3 HF medications. Patients in LMICs were less likely to receive GDMT at target doses.

2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

EMPEROR-Preserved: Results

Empagliflozin Outcome Trial in Patients with Chronic Heart Failure with Preserved Ejection Fraction

Primary composite endpoint: Cardiovascular death or heart failure hospitalization

Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials

A meta-analysis of clinical trials with patients with **CKD** (CREDENCE, SCORED, DAPA-CKD, EMPA-Kidney) with and without T2DM demonstrated a favourable **impact** of SGLT2 inhibition of CKD progression, regardless of T2DM status or the type of CKD

The Nuffield Department of Population Health Renal Studies Group* and the SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists' Consortium Lancet 2022; 400: 1788-801

	Mean baseline eGFR, mL/min per 1:73m²	Events/participants		Event rate per 1000 patient-years			RR (95% CI)
		SGLT2 inhibitor	Placebo	SGLT2inhibitor	Placebo		
Diabetic kidney disease or	nephropathy*						
CREDENCE	56	153/2202	230/2199	27	41	_ 	0.64 (0.52–0.79)
SCORED	44	37/5292	52/5292	5	7		0.71 (0.46–1.08)
DAPA-CKD	43	93/1271	157/1239	36	64		0.55 (0.43-0.71)
EMPA-KIDNEY	36	85/1032	133/1025	42	67		0.56 (0.43-0.74)
Subtotal	46	368/9797	572/9755			- -	0.60 (0.53–0.69)
Ischaemic and hypertensiv	ve kidney disease						
DAPA-CKD	43	18/324	26/363	28	37		0.74 (0.40–1.36)
EMPA-KIDNEY	35	37/706	52/739	27	37		0.69 (0.45–1.05)
Subtotal	38	55/1030	78/1102			\sim	0.70 (0.50–1.00)
Glomerular disease							
DAPA-CKD	43	21/343	46/352	33	70 —		0.43 (0.26–0.72)
EMPA-KIDNEY	42	69/853	95/816	44	64		0.68 (0.50–0.93)
Subtotal	42	90/1196	141/1168			\langle	0.60 (0.46–0.78)
Other kidney disease or un	known						
DAPA-CKD	43	10/214	14/198	25	37		0.81 (0.35–1.83)
empa-kidney	36	36/713	52/725	26	36		0.72 (0.47–1.10)
Subtotal	38	46/927	66/923	••			0.74 (0.51–1.08)
Any diagnosis							
CREDENCE	56	153/2202	230/2199	27	41		0.64 (0.52–0.79)
SCORED	44	37/5292	52/5292	5	7		0.71 (0.46–1.08)
DAPA-CKD	43	142/2152	243/2152	33	58		0.56 (0.45-0.68)
empa-kidney	37	227/3304	332/3305	36	52	-#-	0.64 (0.54–0.76)
Total	44	559/12950	857/12948	••		\diamond	0.62 (0.56–0.69)
Heterogeneity across groups of primary kidney disease: p=0.67							

Frend across trials sorted by eGFR for any diagnosis: p

Favours SGLT2 inhibitor Favours placebo

Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes: FIDELIO-DKD

N=5734 pts with CKD and T2DM, UACR 30 to <300, eGFR 25 to <60 ml/min/1.73 m², and diabetic retinopathy, or UACR 300- 5000, eGFR of 25 to <75 ml/min/1.73 m², median FUP, 2.6 years.

In patients with CKD and T2DM, treatment with finerenone resulted in lower risks of CKD progression and cardiovascular events than placebo.

Design and baseline characteristics of STEP-HFpEF program: semaglutide in patients with obesity HFpEF phenotype

Potential mechanisms of benefit for semaglutide in the obesity phenotype of HFpEF

STEP-HFpEF: results

N= 529 patients with HFpEF (LVEF ≥45%) and BMI ≥30 kg/m² Semaglutide vs. placebo for 52 weeks

Dual primary end points: change from baseline in the KCCQ score and change in body weight

2. Change in body weight: Estimated difference, 10.7% points, p<0.001

Kosiborod M et al. New England Journal of Medicine 2023. DOI: 10.1056/NEJMoa2306963

STEP-HFpEF: results

Stratified Win Ratio for Hierarchical Composite End Point

Treatment with semaglutide resulted in more wins than placebo, with a win ratio of 1.72 (95% CI, 1.37 to 2.15; P<0.001).

The wins favoured semaglutide over placebo for all key components of the hierarchical composite endpoint.

Kosiborod M et al. New England Journal of Medicine 2023. DOI: 10.1056/NEJMoa2306963

Conventional vs. comprehensive HFrEF medical treatment

Cross-trial analysis EMPHASIS-HF (N=2,737), PARADIGM-HF (N=8,399), and DAPA-HF (N=4,744)

Projected mean time to first hospitalisation for HF or CV death for patients starting at age 55

Conventional therapy 6.4 years (4.8–8.0) ACEi/ARB+β-blocker

Comprehensive therapy 14.7 years (12.6–17.1) ARNi+β-blocker+MRA+SGLT2i

Difference +8.3 years (6.2–10.7) — by replacing ACEi/ARB with ARNi and adding MRA+SGLT2i

Values shown include 95% CI. Vaduganathan et al. Lancet. 2020;396:121–8. HFA Heart Failure Association

The ESC Textbook of Heart Failure

Edited by Petar M Seferović Andrew JS Coats Gerasimos Filippatos Stefan Anker Johann Bauersachs Giuseppe Rosano

OXFORD ACCESS ALL CONTENT ONLINE AT ACADEMIC.OUP.COM/ESC

ESC European Society of Cardiology